Unsupervised Transfer Learning for Time Series via Self-Predictive Modelling

نویسندگان

  • Witali Aswolinskiy
  • Barbara Hammer
چکیده

Real-world machine learning applications must be able to adapt to systematic changes in the data, e.g. a new subject or sensor displacement. This can be seen as a form of transfer learning, where the goal is to reuse the old (source) model by adapting the new (target) data. This is a challenging task, if no labels for the target data are available. Here, we propose to use the structure of the source and target data to find a transformation from the source to target space in an unsupervised manner. Our preliminary experiments on multivariate time series data show the feasibility of the approach, but also its limits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Unsupervised Modeling of Partially Observable Environments

We present an architecture based on self-organizing maps for learning a sensory layer in a learning system. The architecture, temporal network for transitions (TNT), enjoys the freedoms of unsupervised learning, works on-line, in non-episodic environments, is computationally light, and scales well. TNT generates a predictive model of its internal representation of the world, making planning met...

متن کامل

Meteonowcasting using Deep Learning Architecture

The area of deep learning has enjoyed a resurgence on its peak, in almost every field of interest. Weather forecasting is a complicated and one of the most challenging tasks that includes observing and processing huge amount of data. The present paper proposes an effort to apply deep learning approach for the prediction of weather parameters such as temperature, pressure and humidity of a parti...

متن کامل

Using optimized distributional parameters as inputs in a sequential unsupervised and supervised modelling of sunspots data

Detecting naturally arising structures in data is central to knowledge extraction from data. In most applications, the main challenge lies in the choice of the appropriate model for exploring the data features. Quite often, the choice is generally poorly understood and any tentative choice may be too restrictive. Growing volumes of data, disparate data sources and modelling techniques entail th...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017